If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2-4=0
a = 5; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·5·(-4)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*5}=\frac{0-4\sqrt{5}}{10} =-\frac{4\sqrt{5}}{10} =-\frac{2\sqrt{5}}{5} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*5}=\frac{0+4\sqrt{5}}{10} =\frac{4\sqrt{5}}{10} =\frac{2\sqrt{5}}{5} $
| w-29=41 | | 36=4xx= | | 8+5x=3x–32 | | 10=s/2+6 | | 19=c/2=3 | | (x)=6x+30 | | 8+5x=–3x–32 | | 9n-6.7+3n+30.7=180 | | 2/3x+4x=18 | | 9n-6.7+3n+30.7=108 | | −88−3n=5n+8 | | 3x+10+3x=16 | | 2−3x=8−15 | | -6x-2=61 | | 56=7x+6x+4 | | p^2+16p-42=64 | | 3*3*3*3=b | | (12/3)b-(3/3)b=1 | | 6(x+4)=4(x+5) | | 6x+8=3x= | | 6-k2=4 | | 2q+5=1 | | m7=6 | | 4+7x+3x=104 | | 7x-37=2x-7 | | 3z+10=14 | | b-797=86 | | (8/5)x-(2/5)x=6 | | t+142=987 | | 2x+8+3x=63 | | 87-2x=57 | | −3x3−x2+3x+1=0 |